IV B.Tech - I Semester – Regular Examinations - DECEMBER 2022

OPTIMIZATION TECHNIQUES (COMPUTER SCIENCE & ENGINEERING)

Duration: 3 hours

Max. Marks: 70

Note: 1. This question paper contains two Parts A and B.

- 2. Part-A contains 5 short answer questions. Each Question carries 2 Marks.
- 3. Part-B contains 5 essay questions with an internal choice from each unit. Each question carries 12 marks.
- 4. All parts of Question paper must be answered in one place.
- BL Blooms Level CO Course Outcome

		BL	CO
1. a)	Write the statement/general-form of an optimization problem.	L2	CO1
1. b)	List any four Elimination methods (under one- dimensional minimization methods)	L2	CO2
1. c)	Practical design problems are rarely unconstrained. But why is the study of unconstrained problems important? List two reasons.	L2	CO2
1. d)	State Bellman's Principle of Optimality.	L2	CO3
1. e)	Write the classification of Integer programming methods for Linear programming problems.	L2	CO4

$\mathbf{PART} - \mathbf{A}$

PART – B

			BL	СО	Max. Marks
UNIT-I					
2	a)	Discuss briefly various engineering applications of optimization.	L2	CO1	6 M
	b)	Find the maxima and minima, if any, of the function $f(x) = 4 x^3 - 18 x^2 + 27 x - 7$	L3	CO1	6 M
		OR			
3	a)	Find the solution of Minimize $f = 9 - 8x_1 - 6x_2 - 4x_3 + 2x_1^2$ $+2x_2^2+x_3^2+2x_1x_2+2x_1x_3$ Subject to $x_1 + x_2 + 2x_3 = 3$ using Lagrange multiplier method.	L3	CO1	8 M
	b)	Discuss the 'Objective function' in the statement of an optimization problem.	L2	CO1	4 M
	UNIT-II				
4	a)	Explain the procedure of 'Interval halving method'.	L2	CO2	6 M
	b)	What are the limitations of 'Fibonacci method'?	L2	CO2	6 M
OR					
5		d the minimum of $f = \lambda^5 - 5\lambda^3 - 20\lambda + 5$ ng Interval halving method in the interval 5).	L3	CO2	12 M

	UNIT-III					
6	stee	we the following equations using the epest descent method with the starting $x_1 = \{0 \ 0 \ 0\}$:	L3	CO2	12 M	
	$2\mathbf{x}_1$	$+ x_2 = 4; x_1 + 2x_2 + x_3 = 8; x_2 + 3x_3 = 11$				
	1					
		OR				
7	a)	Why is the steepest descent method not				
		efficient in practice, although the	L3	CO2	6 M	
		directions used are the best directions?				
	b)	What are the characteristics of a direct search method?	L2	CO2	6 M	
	UNIT-IV					
8	a)	Write a short notes on Characteristics of				
		dynamic programming and basic steps in	L2	CO3	6 M	
		solving dynamic programming problems.				
	b)	What are the applications of dynamic	1.2	CO3	6 M	
		programming?		005	0 101	
	1	OR	1			
9	Sol	ve the following LPP using Dynamic				
	pro	gramming				
		Maximize $z = 8x_1 + 6x_2$				
		subject to				
		$2x_1 + x_2 \le 1000$	L3	CO3	12 M	
		$x_1 + x_2 \leq 800$				
		$x_1 \leq 400$				
		$x_2 \leq 700$				
	a	nd $x_1, x_2 \ge 0$				

	UNIT-V					
10	Solve the following mixed-integer program					
	by the branch and bound algorithm:					
	Minimize $Z = 10x_1 + 9x_2$					
	subject to $5x_1 + 3x_2 \ge 45$	L3	CO4	12 M		
	$x_1 \leq 8$					
	$x_2 \le 10$,					
	and $x_1, x_2 \ge 0$; x_2 is an integer.					
OR						
11	Solve the following Integer linear	L3	CO1	12 M		
	programming problem by Gomory's cutting					
	plane method					
	Maximize $Z = 4x_1 + 3x_2$		CO4			
	Subject to $3x_1 + 2x_2 \le 18$					
	$x_1, x_2 \ge 0$ and integers.					