IV B.Tech - I Semester - Regular Examinations - DECEMBER 2022

OPTIMIZATION TECHNIQUES (COMPUTER SCIENCE \& ENGINEERING)

Duration: 3 hours

Max. Marks: 70
Note: 1. This question paper contains two Parts A and B.
2. Part-A contains 5 short answer questions. Each Question carries 2 Marks.
3. Part-B contains 5 essay questions with an internal choice from each unit. Each question carries 12 marks.
4. All parts of Question paper must be answered in one place.

BL - Blooms Level
CO - Course Outcome
PART - A

		BL	CO
1. a)	Write the statement/general-form of an optimization problem.	L2	CO1
1. b)	List any four Elimination methods (under onedimensional minimization methods)	L2	CO 2
1. c)	Practical design problems are rarely unconstrained. But why is the study of unconstrained problems important? List two reasons.	L2	CO 2
1. d)	State Bellman's Principle of Optimality.	L2	CO3
1.e)	Write the classification of Integer programming methods for Linear programming problems.	L2	CO4

PART - B

			BL	CO	Max. Marks
UNIT-I					
2	a)	Discuss briefly various engineering applications of optimization.	L2	CO1	6 M
	b)	Find the maxima and minima, if any, of the function $f(x)=4 x^{3}-18 x^{2}+27 x-7$	L3	CO1	6 M
OR					
3	a)	Find the solution of $\begin{aligned} & \text { Minimize } f=9-8 x_{1}-6 x_{2}-4 x_{3}+2 x_{1}{ }^{2} \\ & +2 x_{2}{ }^{2}+x_{3}{ }^{2}+2 x_{1} x_{2}+2 x_{1} x_{3} \end{aligned}$ Subject to $x_{1}+x_{2}+2 x_{3}=3$ using Lagrange multiplier method.	L3	CO1	8 M
	b)	Discuss the 'Objective function' in the statement of an optimization problem.	L2	CO1	4 M

UNIT-II

4	a)	Explain the procedure of 'Interval halving method'.	L2	CO2	6 M
	b)	What are the limitations of 'Fibonacci method'?	L2	CO2	6 M
OR					
5	Find the minimum of $\mathrm{f}=\lambda^{5}-5 \lambda^{3}-20 \lambda+5$ using Interval halving method in the interval $(0,5)$.	L3	CO2	12 M	

UNIT-III					
6		ve the following equations using the pest descent method with the starting t, $X_{1}=\left\{\begin{array}{lll}0 & 0 & 0\end{array}\right\}$: $+x_{2}=4 ; \quad x_{1}+2 x_{2}+x_{3}=8 ; x_{2}+3 x_{3}=11$	L3	CO2	12 M
OR					
7	a)	Why is the steepest descent method not efficient in practice, although the directions used are the best directions?	L3	CO 2	6 M
	b)	What are the characteristics of a direct search method?	L2	CO 2	6 M
UNIT-IV					
8	a)	Write a short notes on Characteristics of dynamic programming and basic steps in solving dynamic programming problems.	L2	CO3	6 M
		What are the applications of dynamic programming?	L2	CO3	6 M
OR					
9		e the following LPP using Dynamic ramming $\text { Maximize } \mathrm{z}=8 \mathrm{x}_{1}+6 \mathrm{x}_{2}$ subject to $\begin{aligned} & 2 \mathrm{x}_{1}+\mathrm{x}_{2} \leq 1000 \\ & \mathrm{x}_{1}+\mathrm{x}_{2} \leq 800 \\ & \mathrm{x}_{1} \leq 400 \\ & \mathrm{x}_{2} \leq 700 \\ & \mathrm{x}_{1}, \mathrm{x}_{2} \geq 0 \end{aligned}$	L3	CO3	12 M

UNIT-V

10	Solve the following mixed-integer program by the branch and bound algorithm: $\begin{array}{lr} \text { Minimize } \mathrm{Z}= & 10 \mathrm{x}_{1}+9 \mathrm{x}_{2} \\ \text { subject to } & 5 \mathrm{x}_{1}+3 \mathrm{x}_{2} \\ & \mathrm{x}_{1} \quad 45 \\ & \leq 8 \\ & \mathrm{x}_{2} \leq 10, \end{array}$ and $\quad x_{1}, x_{2} \geq 0 ; \quad x_{2}$ is an integer.	L3	CO 4	12 M
OR				
11	Solve the following Integer linear programming problem by Gomory's cutting plane method $\begin{aligned} & \text { Maximize } \mathrm{Z}=4 \mathrm{x}_{1}+3 \mathrm{x}_{2} \\ & \text { Subject to } \quad 3 \mathrm{x}_{1}+2 \mathrm{x}_{2} \leq 18 \end{aligned}$ $\mathrm{x}_{1}, \mathrm{x}_{2} \geq 0 \text { and integers. }$	L3	CO4	12 M

